If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-10x-81=0
a = 4.9; b = -10; c = -81;
Δ = b2-4ac
Δ = -102-4·4.9·(-81)
Δ = 1687.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-\sqrt{1687.6}}{2*4.9}=\frac{10-\sqrt{1687.6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+\sqrt{1687.6}}{2*4.9}=\frac{10+\sqrt{1687.6}}{9.8} $
| 4(2x+9)=-34+22 | | 11(7x+3)-33=0 | | −5(4x−3)−x+5= −190 | | B+6bb=6 | | 2x+40x=3.5 | | 3(x+8/3)=-14 | | −5(4x−3)−x+5= −190−190 | | 54=y+5y | | 6(2+y)=3(3+y | | 88=177-u | | (2x)+(5x+26)=180 | | 2(9x-7)=16 | | −4(3x+5)+2x+3=−4(3x+5)+2x+3= 5353 | | 123=-w+168 | | -3r+8=-4r | | 3(2x+1)=7(1+x) | | -y+16=208 | | -5n+4n-9=9-3n | | 2y+8=4y-4 | | 7c+5=-8-6c | | 4(2y+12)=20 | | |8x+28|=16 | | 9+4n=25-2n | | 5(x-2)=2+3x | | 62=-v+161 | | 3(2p+14)=9 | | y=7,5y | | 4x-10-x=8x | | -4(2r-4)=2r-14 | | 5+q=20-8q+8q | | 3^(m-3)+3^(m-3)=18 | | 2.549=2.399+0.03(w) |